COVID-19 / Coronavirus Resources / Reading List

Stuck at home, I’ve spent too much time reading the internet about the Coronavirus. Below are the most useful resources I have found for understanding what is going on and what is likely to come in the future.

If you only have 8 minutes, this video is the best overview I’ve found:

https://www.youtube.com/watch?&v=BtN-goy9VOY

Status Tracking

Why Social Distancing?

What needs to improve?

Actions you should take

About Covid-19 / Coronavirus

Timeline Back to Normal

Humor

Older links that are still relevant:

 

How Harley Quinn: Birds of Prey could have been so much better.

My wife and I went to see Harley Quinn: Birds of Prey for Valentines day. And yes, it was at least 50% her idea. The movie wasn’t bad, and had several good moments, but it could have been so much better.

My wife appreciated “the girls” kicking a lot of male ass, but several of the fight scenes went on for too long with too much gratuitous gruesome violence. (Maybe not as bad as the Myth Busters diving suit episode, but did Harley Quinn really need to break a bad guy’s leg in three different places with three different hits?) The bad guys were sick and gruesome as well, which served as their only character development and justification for getting their asses kicked.

The best parts of the movie—where they didn’t take themselves too seriously and embraced the camp without actually putting “Bam” and “Pow!” on-screen — almost rose to the level of Tim Burton’s Batman. Quirks like the ode to the breakfast sandwich,   stealing a mini-van as a getaway vehicle, Huntress being socially awkward, or one-liners such as “Hair-band?” shone like lighthouses in the fog, indicating where the movie could have gotten things so much better. Some of the action shots were amazing: Glitter Bomb bean-bag riot gun attack on the police station, baseball bat floor bounce, the fun-house fight scene, and the roller skate car chase. But many of them wore out their welcome and went on too long and over the top with violence.

I understand that the source material is dark, gritty and violent, but really, who has actually read those comics? Forget the canon, and pander to the crowds. Make it fun and campy, go for a PG-13 rating, and develop the other characters a bit more. Margot Robbie does a great job with Harley Quinn, but the other actresses didn’t have enough to work with.   As my wife said, “It’s no Wonder Woman”.

Project Source 11″ LED Integrated Light Failure (Flashing) IPX8011LS-ORB

Two and a half years ago I purchased a 2 pack of LED integrated lights for my house from Lowes. They were the IPX8011LS-ORB units, and cost $50 for the two pack. Recently, the electronics in one failed such that the light would flash on and off quickly (2-4 times a second) instead of saying lit continuously once the electronics puck heated up. Here are some photos of the old/bad unit (click to enlarge).

Some of the model numbers I found in the old unit: C041218 (18W LED Driver Triac dimming)   BG0358-110C036-03 (on the circuit board) HH-03 94V0 E327405 4515 (also on the circuit board.

Luckily, it came with a 3 year warranty and I was able to find my receipt, so I took it to Lowes and they replaced it with one that looked exactly the same on the outside, but had a different item number on the box and a completely different set of electronics on the inside. Photos of the new unit, which has worked fine so far:

Serial/Model numbers/markings I found on the new unit: 41056, F11-1L   L.MAC6-1430-L021-00, KF-FAND-S008-V00 2019.01.07 1400LM (1400 Lumen?), Intertek 4008733,

DONGGUAN KEE TAT LIGHTING LTD.

 

UPDATE: March 2022, the 2nd (original) unit from the (original) 2 pack failed in the same way (out of warranty). I replaced it with an inexpensive fixture that takes replaceable (LED) bulbs.   [The replacement unit from the 2019 failure is still working fine…]

Ego 21″ mower (LM2100SP) 3rd self propel motor failure & repair report

My Ego 21″ self propelled electric lawnmower started on its third self propel unit failure back in June of 2019.   For those keeping track, I bought the Ego 21″ mower back in April 2017, and it’s self propel unit failed in October of 2017 I took it to Home Depot to be repaired (which took 6 weeks) and the repaired self propel unit lasted until July of 2018. Ego customer support was nice enough to send out a replacement mower that time, so my downtime was only 10-15 days, and I was hopeful that the replacement mower might have a better self propel unit in it. Unfortunately, that one started to fail in June of 2019, so it looks like the lifespan of my self propel units are 4 months, 10 months and 11-16 months.

So, back in June 2019, the self propel unit just stopped working much like it had previously. I called Ego customer support and they offered to ship me a replacement mower. We had that all set up, but the next day I went out to push-mow the rest of my lawn, and lo-and-behold, the self propel unit had “reset” and was working again! So I called Ego back and canceled the replacement.     Unfortunately, although the self propel unit had not totally failed, it had not fully recovered, and still had some issues that got gradually worse over time. Specifically, the top speed was reduced, and over the next several months, the power and top speed appeared to keep dropping. Eventually it got to a point where it would not propel the mower up a slight hill without me assisting. Eventually, in January of 2020, the self propel unit failed completely, and did not “reset” itself.

Ego shipped me a replacement mower and I shipped the bad mower (my 2nd) to them, so I am now on my 3rd Ego mower (and year 3 of my 5 year warranty). However, for the first time in 3 self-propel failures the SP unit is different! The new mower (manufacture date October 2019) has a different style of self propel unit when compared to the three units that had failed on it in the past. The old unit had a gearbox on the drive shaft and the motor body stuck upwards at a 90 degree angle. The new unit has the motor body above but parallel (horizontal) to the drive shaft. I don’t know if the old unit had a fan, but the new unit has a fan clearly visible.

Older Self Propel Unit

 

New Self Propel Unit

Objectively, the new self propel drive unit doesn’t look as impressive as the older unit, but given the number of failures I have had with the old style, I’m excited to have something change (and hopefully improve). From a performance standpoint, the new self propel unit works just as well as the old style, so there is no loss in performance. I just hope that it will have more longevity than the older units.

I suspect that the size of my yard (which is large enough that it takes me two 7.5 AH batteries to mow it in the fall/winter, and up to four 7.5 AH battery charges in the heat of summer) may be the reason the self propel unit’s are failing. I suspect I’m putting a lot more “miles” on the SP unit than most Ego owners, plus they seem to be failing in the heat of the summer. I’m not sure if that is due to heat related problems, or if it’s due to the grass growing more in the summer.

2020 Over The Air (OTA) HDTV Channels in Orlando, Florida

After the FCC auctioned off some of the HDTV spectrum for cell phone (5G) use, a few stations had to change their channel allocations. Here is a list of the over the air (OTA) channels I can pick up from the west side of Orlando.

  • 2_1 – NBC (WESH-DT) VHF-11
    • 2_2 – Me TV
  • 6_1 – CBS (WKMG-DT)
    • 6_2 – Dabl   WKMG-DT
    • 6_3 – Cozi
    • 6_4 – Start TV
    • 6_5 – Decades
  • 9_1 – WFTV-HD   (ABC) (UHF-35)
    • 9_2 – LAFF
    • 9_3 – Escape
  • 10_1 – Diya TV (Indian? classic cinema) [Schedules Direct does not have a lineup yet]
    • 10_2 – Orange (county government TV)
    • 10_3 – Vision   (orange TV)   (WLOQ?)
    • 10_4 – This TV
    • 10_5 – News Net
    • 10_6 – JTV
    • 10_9 – open
  • 15_1 – WDSC-HD (PBS 15 – Daytona Beach)
    • 15_2 – WDSC-ED The Florida Channel
    • 15_3 – WDSC-WV (Worldview)
  • 18_1 – WKCF-DT   CW
    • 18_2 Justice
    • 18_3 estrell
  • 24_1 – WUCF-HD (PBS 24 UHF -34)
    • 24_2 create
    • 24_3 kids
  • 27-2 – 27 – WRDQ
    • 27_2 – Antenna
    • 27_4 – Grit TV
  • 31_1 – T31 WTMO CD (TeleMundo Orlando )
    • 31_2 – WTMO-SD
    • 31_3 – TELEXITOS (Xitos)
  • 35_1 – WOFL-DT (FOX)
    • 35_2 – LIGHT
  • 43_1 WVEN-TV (Univision) UHF-22
    • 43_2 – GET TV
    • 43_3 – Bounce
    • 43_4 – Escape
    • 43_5 – Quest
  • 52_1   TBN-HD (Trinity Broadcasting Network) (WHVL-TV Digital 52, UHF 32)
    • 52_2 Hillsng (Hillsing)
    • 52_3 – Smile
    • 52_4 – Enlace
    • 52_5 – JUCE
  • 55_1 WACX-D1 (SuperChannel )
    • 55_2 – WAXC-D2
    • 55_3 – WACX-D3
    • 55_4 – WACX-D4
    • 55_5 – WACX-D5
    • 55_6 – WACX-D6
    • 55_7 – WACX-D7
    • 55_8 – WACX-D8
    • 55_9 – WACX-D9
  • 56_1 – ION (WOPX)   Physical Channel 48
    • 56_2 – QUBO
    • 56_3 – ION Plus
    • 56_4 – Shop (sponsored Television programming)
    • 56_5 – QVC
    • 56_6 – HSN
  • 65_1 – WRBW-DT     UHF-28 (fox 35 plus, my network TV)
    • 65_2 Movies!
    • 65_3 H&I
    • 65_4 Buzzr
  • 68_1 – WEFS-HD Educational   (Eastern Florida State College) [minimal signal, can’t receive reliably]
    • 68_2 – WEFS-CL (Classic Arts)
    • 68_3 – WEFS-NS (NASA Educational)
    • 68_4 – WEFS-FL (Florida Channel)

Salvage 2013 Nissan Leaf modules – 7 year old range update

Back in January of 2016 I put a set of battery modules harvested from a salvage 2013 Nissan Leaf into my S-10 conversion electric pickup. In march of 2016 I drove the truck for a while to see what its range was. [More than 46 miles, as I got tried of driving. The pack had a capacity of at least 15 kWh at that point in time.]

37.4 miles on trip meter.

Today I drove the truck for 35.8 miles before the low cell warning beeper from the BMS started to alert. After I got home [37.4 miles total], the average cell voltage of the pack was 3.75, while my (one) lowest cell was down at 3.3 volts. As it turned out, that cell must have started the trip out at a lower state of charge / voltage from the other cells, as it was still low when charging finished and I had to manually add charge to it individually. [My BMS does a good job of alerting at high/low voltage conditions, but does not do much for balancing the pack.]

According to my JuiceBox, the pack required 14.74 kWh to recharge, which is a good estimate on the battery pack’s current capacity. [This is almost exactly the same amount of power that I used in the trip in 2016, but I didn’t go as far due to different driving conditions. And I also hit the bottom of (at least one cell’s) state of charge.

The 2016 trip averaged 322 watt-hr/mile. This trip consisted of a lot of stop & go city driving as well as a few lengthier stretches of 49 mph arterial streets, and I wasn’t light on the accelerator. My measured watt-hour / mile (from the wall, including charger losses) was: 394 watt-hr/mile

Assuming that the pack has a 15 kWh capacity, this is 63% of the brand new 24 kWh capacity, which means I lost 37 % of the capacity over 7 years. (Some of that was in the original Nissan Leaf, but most of it was in my s-10 conversion.)

I’ll repeat the test after balancing my cells a bit better and see how things go.

Update: I drove the truck until the low cell beeper came on again. I went a total of 38.5 miles, and recharged the pack with 16.69 kWh (16690 watt-hours). The relatively higher   433 watt/hours per mile number is a result of the weather being a lot cooler so I was running the heater in the truck and more 45 mph roads. Balancing the cells got the usable pack capacity (measured from the wall with charging inefficiencies) to 16.69 kWh (which could have theoretically gotten me to 42 miles at 394 watt-hour/mi or 51 miles at 322 watt-hr/mile)

The main take-away is that at 16.5 kWh, I still have access to 68% of the brand new 24 kWh capacity Leaf pack, which isn’t too shabby for a 7 year old battery.

 

 

 

12 Month Grid-Tie Solar system report

Over a year ago we installed a 10.4 kW grid tie solar system.   You can read about the shakedown period here.   This post will cover all of 2019, the first full year the solar system was operational. [Technically, it covers the period between Dec 12th 2018 through Dec 11th 2019, as Duke Energy bills us mid-month.]

In this 12 month period, we consumed 16,695 kWh of power at our house (a 3 bed 2 bath ranch with all electric utilities + two electric vehicles). [We used 16,796 kWh the prior 12 months, so our usage did not appreciably change due to installing the solar system.]

Of this total electrical usage, our solar system produced 15,252 kWh or 91.4% of our total electrical usage, while we purchased 1,443 kWh from Duke Energy and the electrical grid. [There are no economic benefits to producing more than we use, so the ideal system would hit 99.9% of actual usage. We were aiming for 90% when we designed our system.]

Over the year, we paid Duke Energy $314.49 ($130.80 for required connection charges, and $183.69 for the electricity we imported from the grid, averaging 12.7 cents per kWh.)   This compares to our previous yearly cost for power of $2,211.13, giving a yearly cost savings of $1,896.64.   After the EIC tax credit, our solar system cost us $17,439.20, which gives a payback period of 9.19 years. (I’m deliberately ignoring the interest we could have earned by investing the money we paid for the solar system in the stock market, which counteracts the fact that I’m also ignoring the fact that Duke energy raises their rates every so often.)

As the solar system is expected to have a working lifespan of 15-25 years, any energy it produces after the payoff period will be pure profit. So yes, a solar system does make economic sense, in addition to the environmental, social and political benefits.

 

 

BEME Erod remote control repair (crystal oscillator replacement)

Electronics inside a remote control

I dropped the remote control for my E-Rod electrically operated drapes, and it stopped controlling the receiver/drape unit. I had another remote that still worked, so I knew the problem was with the remote, and not the drape motor unit. The IR transmitters were still flashing a signal, and on the oscilloscope the signal looked reasonable, but the carrier frequency was at 62.7 kHz.

I eventually traced the problem to the yellow square package, a crystal oscillator, and bought a 10-pack of them for $5 online (with a month wait time….). Replacing the oscillator restored the carrier frequency to 38 kHz and restored proper operation of the remote.

 

Ego Battery degradation over time (2 year mark)

I’ve been tracking how much power it takes to charge my Ego batteries since I purchased them. I’m using this as a stand in for how much capacity they retain over time. You should know that I have a large lawn (in Florida) and cycle these batteries at least once a week (more in the summer) so these batteries are getting more of a workout than if you had a small city lot that you could mow a few times before charging the battery.

I have two 7.5 AH batteries (one bought before the other). They took 410 watt hours to recharge when new. After one year of usage, the remaining capacity was (78% 320 w/h and 82% 340 w/h) on the two batteries. My older battery has two years of use, and has 70% of it’s original capacity (290 w/h).   So it looks like they drop between 18 and 22% of their capacity the first year, and an additional 8% the 2nd year for a total loss of 30% of their capacity after the 2nd year of usage. [The batteries have a 3 year warranty.]

30% capacity loss in 2 years

Update: See my new post at the 3 year mark for the 2014 battery (and 2 year mark for the 2018 battery).