dyndns.org (dyn) ddclient configuration fix

I have been using ddclient to update my dynamic dns records for various servers and laptops for many years now. Around a month ago they all stopped updating the DNS server. I eventually tracked the error down to a line in the configuration file:

server=members.dyndns.org

It’s not like I had made up a random server name…this server had been working successfully for several years. And it is the server recommended by the ddclient automatic configuration script generator on the dyndns.org website even now. [https://account.dyn.com/tools/clientconfig.html] However, at least for me on Ubuntu 10.04 and ddclient 3.8.0 it had stopped working.

I changed it over to:

server=members.dyndns.com

And this fixed the problem.

Top speed 275 mm / sec

Although my print head can move at 300 mm/sec, my extruder can not reliably keep the plastic flowing at that speed. (Perhaps if I turned up my extruder temperature above 195 C…)

I have decided that 275 mm / sec is a reliable top speed for my extruder after printing a relatively large part at that speed with the temperature turned up to 200 C.

This video shows layers being printed in about 15 seconds with 3 exterior perimeters and 25% infill.

Here is another video of the twisted koch snowflake vase (scaled up to 150%) being printed at 275 mm/sec top speed. Due to the fractal nature of the sides of the vase the platform rarely got up to the top speed, as it never had a long enough path to accelerate up to full speed.

Printing at 300mm/sec

I decided that I needed to switch to a different (larger) 3D object so that my printer could accelerate up to full speed on some long straightaways. Here is what 300 mm/sec printing looks like on a larger square object:

However, my extruder just couldn’t keep the plastic flowing (at least, not at 185 C), and it jammed. So I have decided to try 275 mm/sec with the temp set to 200 C (lading to an actual extruder temp that is closer to 195 C).

Stepping up the speed on my Rostock-Mini

Now that my Rostock-Mini is basically finished, I have been adjusting the parameters of Slic3r to increase the print speed. Why? Because this is my sports car 3D printer….It’s small, looks cool, and is fast! In contrast, my Prussa Mendel is the family mini-van: Nothing to look at, reliable, with a large print volume.

finished_frontview

Because the Rostock-Mini has the cold end of my extruder mounted on top of the frame (not on the motion platform) it doesn’t have to move the weight of the extruder stepper, gears and associated hardware. The filament is pushed down to the platform via a bowden tube (think bicycle brake cable) and the only part that needs to accelerate and decelerate is the hot-end and associated fan / air duct. The lighter the platform is, the faster it can move and change direction while maintaining positional accuracy.

The Twisted Kochflake vase that I’ve been using for my test print has 7 layers at the bottom with “infill” but above that, it’s just made up of four perimeters of plastic traced around the volume of the interior of the vase. This means that some layers require a relatively short amount of motion/time, especially near the lower part of the vase. I have my Slic3r software set up to not allow any layer to take less than 15 seconds to give the plastic a bit of time to solidify before we put the next layer on top of it, so in some parts of the videos below the platform is not moving at it’s true top speed because of this software limitation. Also, due to acceleration constraints, the platform can’t get up to full speed on small bumpy surfaces. When the printer is printing the bottom seven layers (you’ll see it going back and forth to fill in the circle with plastic) or the wider part of the fractal pattern as the vase grows up you’ll see where layers take longer than 15 seconds (4 times around the vase is a single layer) and the platform will be moving at top speed.

Here is my printer set to 225 mm/sec, which is faster than most printers that have a moving single extruder will be able to do:

Here is the twisted Koch Vase at 150 mm/sec, which is approaching the top speed of most gantry style homebrew 3D printers that move the cold end of the extruder.

This is a relatively slow 75 mm/second video:

Rostock Mini Z-Axis accuracy

When calibrating the bed of a standard 3D printer, you can slide a piece of paper under the extruder and adjust the bed until it’s touching the extruder (but still able to be pulled out) in several places to level the bed about right. However, with a delta bot, your X/Y/Z coordinate system must be converted mathematically into the coordinate system of the three carriages ridding the towers, and determining if your calibration parameters are correct is not as easy. If your calibration parameters are incorrect, your entire coordinate space may be warped!

I was able to eyeball things to get my calibration parameters set up “good enough” for standard use, but it still wasn’t perfect. I finally broke down and shelled out $15 for a cheap Chinese made machinist’s dial indicator so that I could get my coordinate space transforms square and flat down to a thousandths of an inch. (I changed one calibration parameter by 0.5 mm…so it wasn’t terribly far off from the “eyeball” approach, but I feel better about it now…)

Here is a video of the machinist’s dial indicator in action:

The nine small vertical “bumps” in the beginning of the video is from me pushing the 0.1mm down button on the control interface multiple times until I got the indicator close to the top of the dial. As you can see from the dial it takes nine 0.1mm bumps to travel around 3.5 hundredths of an inch. Google says that 0.9mm = 0.0354331 inches, so my units appear to line up right.

I also jumped the head up and down 10mm at a time to show that the head comes back to the same Z height.

When I scrape the probe back and forth in the Y axis the indicator jiggles around due to friction, but you can see that the measurements don’t move more than 0.01″ when the probe moved across the entire glass build plate (and it’s very close to 0.001″ accuracy when stopped at the end and middle points). Overall I’m very happy with the positional accuracy and calibration of the motion platform now. Although I only measured the Z axis with my dial indicator, because it’s a delta-bot the z-axis is a joint effort of all three towers, so I figure that my positioning accuracy in the Z coordinate axis is a good proxy for the X and Y coordinate axis as well.

Greg’s Wade Bowden Extruder for Rostock-Mini

The original direct drive Airtripper V3 extruder that I had made for my Rostock-Mini was almost able to get the job done. However, my stepper just didn’t quite have enough torque to push the filament directly, and it would “skip” steps relatively continuously. I could still print large objects, but they would have a “foamy” appearance due to using less plastic than they really should. Also, my stepper motor and drivers were getting hot due to all the extra current flowing through them.

I finally decided it just wasn’t going to work well enough for production use, and printed an extruder (Gregs Accessible Wade extruder) that has a printed gear system for a large mechanical advantage. I adapted it to feed into my Bowden tube and mount onto the top of my Rostock-mini frame with two printed parts.
IMG_1250

It made all the difference in the world. My geared extruder can now easily feed filament continuously through the hot end at a 300mm/min rate.

I also printed an adapter plate that holds the stepper motor and attached extruder in the appropriate location/angle. In the future I may integrate this with parts from Gregs Wade extruder design to build an integrated extruder.
IMG_1247

How to make a 264 gallon rain “barrel” out of a liquid tote tank

100L-tank

I was recently given a 264 gallon liquid tote tank. That’s 1000 liters for you non-americans. These tanks are typically used to transport and store liquid products such as corn syrup or dish soap for small to medium sized industrial processes (large industrial processes get tanker cars full of liquid….). The tank itself is made of HDPE (high density polyethylene), which is the same plastic that milk jugs are made of, recycling number “2” (but it’s quite a bit thicker!) and it is protected by a galvanized steel cage with forklift points on the bottom.

Unfortunately, mine come with a semi-proprietary valve and nozzle. To make it into a (large!) rain barrel, I wanted to attach a standard 3/4″ hose bib. Continue reading

Finishing the Rostock-Mini

I find that getting a 3D printer working (i.e. printing parts) is relatively straightforward. But getting it FINISHED takes just as much time. Over the last month I have been working on finalizing all of the little bits of my Rostock-Mini that will take it from a “working printer” to something I am willing to put on a desktop and show off.

First, I needed a spool roller. I could have mounted the spool beside the printer on top of one of the many tabletop bearing spool rollers on Thingiverse, but I really wanted the footprint of the printer to be self contained, so I decided to mount the spool horizontally above the printer, and of course, designed my own horizontal spool roller system.

complete_sr_with_short_ER_ring

The biggest threat to a “finished” look is wires. Lots and lots of wires. Lets count them up… 4 per servo (16 so far), 2 per end stop (6 more makes 24!), 2 for each heater (extruder/bed) and temp sensor (extruder/bed) and fan (10 more make 34!) plus a few more to power the whole thing!

I tackled the power inlet and power switch (a.k.a. Emergency stop!) first, by designing a power inlet block to fit my jack and switch. Although not taking full advantage of the medium, I’ve found that 3D printers do a good job making custom front panels.

final_installed

I shortened all of the wires under the base to size and then covered the servos and power wires with a wire mesh. (Wire management, in the form of extra crimp receptacles so that I could make custom wire lengths and wire mesh added $30 to the project cost…and quite a bit of time. After an hours work with my smallest needle nose pliers, I’ll be quite happy to outsource the population of crimp connectors.)

under_base_wireing mesh_wiring_keepers

Luckily, with the Rostock-Mini, a good number of the wires are under the base, but even if you didn’t choose to put your extruder servo up top like I did, you’d still have to deal with getting quite a few wires from the endstops and print head down to the base. My current plan is a big long length of wire mesh. (Did I mention that I like this stuff?)